Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

نویسنده

  • VICTOR GINZBURG
چکیده

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,OZ). The induced Gerstenhaber bracket on the Tor-sheaf turns out to be canonically defined; it is independent of the choices of deformations involved. There are similar results for Ext-sheaves as well. Our construction is motivated by, and is closely related to, a result of Behrend-Fantechi [BF], who considered the case of Lagrangian submanifolds in a symplectic manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersecions

Let M and N be Lagrangian submanifolds of a complex symplectic manifold S. We construct a Gerstenhaber algebra structure on TorS ∗ (OM ,ON ) and a compatible Batalin-Vilkovisky module structure on ExtOS (OM ,ON ). This gives rise to a de Rham type cohomology theory for Lagrangian intersections.

متن کامل

Formality of canonical symplectic complexes and Frobenius manifolds

It is shown that the de Rham complex of a symplectic manifold M satisfying the hard Lefshetz condition is formal. Moreover, it is shown that the differential Gerstenhaber-Batalin-Vilkoviski algebra associated to such a symplectic structure gives rise, along the lines explained in the papers of Barannikov and Kontsevich [alg-geom/9710032] and Manin [math/9801006], to the structure of a Frobenius...

متن کامل

Operadic Formulation of Topological Vertex Algebras and Gerstenhaber or Batalin-vilkovisky Algebras

We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak...

متن کامل

Coisotropic Intersections

In this paper we make the first steps towards developing a theory of intersections of coisotropic submanifolds, similar to that for Lagrangian submanifolds. For coisotropic submanifolds satisfying a certain stability requirement we establish persistence of coisotropic intersections under Hamiltonian diffeomorphisms, akin to the Lagrangian intersection property. To be more specific, we prove tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009